Enabling Innovation; Using OLEDs and LEDs in Todays Fixtures

Stephen Blackman

Founder and Chief Design Officer

Everybody is asking me about OLEDs...

Are OLEDs ready to use in Fixtures?

Is OLED the next big thing in Lighting?

What are the advantages over Edge-lit LED panels

Is it expensive?

Is anyone making any money Selling OLED's?

How do we get the OEMs to buy OLED's?

Why does everyone like OLEDs?

Why do I like OLEDs

It is All About Scale!

Basic LEDs are not "Light Bulbs"

- "Light Bulbs" are omni-directional, Individual LED's have a generally directional distribution.
- Most LED's require diffuser, optical lens or other component to control and diffuse the light.
- Individual LED's have a high surface brightness (small bright point source).
- To replicate a simple "light bulb" it takes many LED's and it requires an assembly of housings, electronics, heat sinks and diffusers.

OLEDs can become the first real SSL "Light bulb".

- OLED is a unitary, self contained light source
- Can be used with or without a diffuser
- Even, Lambertian type of light distribution
- Low surface brightness (panel source of light)
- (Could be) easy to re-lamp
- (Could have) integrated socket

What can you do with an OLED "Light Bulb" in a decorative fixture

Can use multiple OLED panels, behind a diffuser

Good for low glare ambient and task illumination

Use as "back to the wall" directional light

Double Sided housing provides wide 360 degree distribution

Uniquely Thin

Our first OLED production fixture

OLED Chandelier and Wall sconce (released May 2012)

Obstacles slowing OLED fixtures' market acceptance

Problem:

High Fixture Cost

\$44 KLM

Fluorescent fixture VS. \$2900 KLM*
OLED fixture

Problem:

Low Efficacy

120 L/W LED light source VS. 45 L/W OLED panel

Problem:

Short Life Span

42,000 hour T8
Fluorescent tube VS.
12,000 hour OLED
panel.

Problem:

Glass Breakage

No standard support or mechanical attachment methods for holding delicate panels in place

Problem:

Lack of OLED Panel Standardization

- Similar to CFL development problems.
- Size and output of OLED sources need industry standards

Problem:

Lack of OLED Socket Development

- Can result in confusion and too many choices.
- Need standard connector for ease of installation and to promote use of OLED's by OEMs.

Problem:

OLED Components Aren't Designed for Lighting Industry

- Need to make products conform to industry practices.
- LED COB sockets are example of growing lighting niche due to ease of use.

The dilemma of using OLEDs:

1- How do we promote a new flat panel light source, and a shape, that has not yet been accepted by the industry?

2- How do we justify expensive, low efficient technology that is still at its infancy?

Our short term solution:

Want to promote OLED light sources in the long term <u>But</u>

We need to produce fixtures that will be efficient and can be affordably sold <u>now</u>.

Solution

Create the demand in the industry for small flat panel light sources...

...by using compatible Edge-lit LED panels.

OLED / Edge-lit LED comparison

\$835 KLM OLED Panel	vs.	\$85 KLM Edge-lit Panel*
45 Lum./W OLED Panel	vs.	85 Lum./W Edge-lit Panel*
<u>10 - 15K</u> hr. OLED Panel	vs.	40 - 50K hr. Edge-lit Panel*

^{*} Approximate specifications, using currently available Edge-lit panel with mid-powered LEDs /and currently available OLED 100 x 100mm panels

Edge-lit LED panels

Our recent work in edge-lit LED

Flat panel
lighting can
influence and
alter the look
and shape of
task and
portable lighting

Our recent work in edge-lit LED

Flat panel lighting allows use of new, unique shapes and materials

What does the future look like for flat panel illumination

The future looks "bright" for edge-lit panels in lighting

Edge-lit lighting is making in-roads into certain large scale and decorative fixture categories today

In 2013- An average edge-lit LED 2x2 fixture has 90 L/W, 50K Life, and cost \$83/ KLM

In 2013- An average T5HO 2x2 fixture has 70 L/W, 24K Life, and cost \$44/ KLM

According to the SSL Multi-Year Plan of 2013 from the U.S. Dept. of Energy, in the next six years...

TABLE 3.9 BREAKDOWN OF OLED LUMINAIRE EFFICIENCY							
Metric	2013	2015	2020	Goal			
Panel Efficacy ¹ (Im/W)	80	100	140	190			
Optical Efficiency of Luminaire	85%	88%	92%	95%			
Efficiency of Driver ²	88%	91%	93%	95%			
Total Efficiency from Device to Luminaire	75%	81%	***	90%			
Resulting Luminaire Efficacy ¹ (lm/W)	60	81	120	171			

Luminare Efficacy might be **120**

Lumens/ watt TABLE 4.5 OLED PANEL AND LUMINAIRE MILESTONE

Year	ar Target	
FY10	Panel: >60 lm/W	
FY12	Laboratory panel: 200 lm/panel; >70 lm/W; >10,000 hours	
FY15	Commercial panel: <\$50/klm (price); >100 lm/W; 20,000 hours	
FY18	Luminaire: 100 lmM	
FY20	Luminaire: price <\$50/kim	

OLED panel life could be 30,000 hours

Metric	2013	2015	2018	Goal
LER (lm/W)	320	330	350	360
Internal Quantum Efficiency	85%	90%	90%	90%
Electrical Efficiency	75%	80%	85%	85%
Extraction Efficiency	40%	50%	60%	70%
Panel Efficacy (Im/W)	80	100	120	190
L ₇₀ Lumen Maintenance (1,000 hours)	15	20	25	30

Luminare Prices may be below \$50/ KLM

Multi-Year Program Plan

OLED panels can become the next multi-use

"light bulb"

In <u>2020</u>- An average **OLED panel** may have **120 L/W, 30K Life**

"Back Against the Wall" CFL fixture applications* (retrofit and new) can use OLED's as "light bulbs"

*Fixtures with diffusers and less then 2000 Lumens, (i.e. outdoor lanterns, interior sconces, flush mounts, vanities, emergency lighting, etc.)

In 2020 -If an OLED fixture has 120 L/W, 30K Life, and cost below \$50/ KLM, THEN.....

...OLED "light bulbs" can then replace edge-lit panels in a variety of flat panel fixture applications

What are the next steps for OLED in the lighting industry

Suggestion:

1-Establish the need in the market for flat panel light sources.

2-Improve the life, efficacy, and cost of OLED,

3-Create standardization in size, shape and socket for the OLED

What are the next steps for OLED in the lighting industry

Suggestion:

Think of OLED as a new type of "light bulb".

Adjust industry expectation for when OLED will be viable.

And then be patient!

Contact info:

Stephen Blackman Founder and Chief Design Officer

sb@blackjacklighting.com

www.blackjacklighting.com

